Regression Quantiles Under Censoring and Truncation
نویسندگان
چکیده
منابع مشابه
Logspline Density Estimation under Censoring and Truncation
In this paper we consider logspline density estimation for data that may be lefttruncated or right-censored. For randomly left-truncated and right-censored data the product-limit estimator is known to be a consistent estimator of the survivor function, having a faster rate of convergence than many density estimators. The product-limit estimator and B-splines are used to construct the logspline ...
متن کاملEstimating extreme quantiles under random truncation
The goal of this paper is to provide estimators of the tail index and extreme quantiles of a heavy-tailed random variable when it is righttruncated. The weak consistency and asymptotic normality of the estimators are established. The finite sample performance of our estimators is illustrated on a simulation study and we showcase our estimators on a real set of failure data. keywords: Asymptotic...
متن کاملConsistency of Nonlinear Regression Quantiles under Type I Censoring, Weak Dependence and General Covariate Design
For both deterministic or stochastic regressors, as well as parametric nonlinear or linear regression functions, we prove the weak consistency of the coefficient estimators for the Type I censored quantile regression model under different censoring mechanisms with censoring points depending on the observation index (in a nonstochastic manner) and a weakly dependent error process. Our argumentat...
متن کاملAccurate confidence limits for quantiles under random censoring.
In survival analysis, estimates of median survival times in homogeneous samples are often based on the Kaplan-Meier estimator of the survivor function. Confidence intervals for quantiles, such as median survival, are typically constructed via large sample theory or the bootstrap. The former has suspect accuracy for small sample sizes under moderate censoring and the latter is computationally in...
متن کاملCox’s Regression Model under Partially Informative Censoring
We extend Cox’s classical regression model to accomodate partially informative censored data. In this type of data, each observation is the minimum of one lifetime and two censoring times. The survival function of one of these censoring times is a power of the survival function of the lifetime. We call this the informative censoring time. The distribution of the other censoring time has no rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2005
ISSN: 2287-7843
DOI: 10.5351/ckss.2005.12.3.807